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Abstract. The previously obtained solution of a nonstationary heat conduction problem for a two-piece rod, one 

end of which is in convective heat exchange with the environment, is generalized to the case of an inhomogeneous 

initial temperature field. The solution is presented as an eigenform expansion of the corresponding boundary 

problem and is expressed in terms of elementary functions. The obtained generalization makes it possible to 

propose an algorithm for solving a general problem with arbitrarily varying ambient temperature and heat exchange 

coefficient. The relations are presented, which allow to find axisymmetric stress fields in a two-layer cylinder by 

the calculated temperature field in a two-layer rod also in an analytical form. A comparative analysis has been 

made of the results obtained on the basis of the proposed analytical algorithm and the results of numerical 

calculations by the finite-element method. The aim of this comparison was to determine the influence of different 

simplifying assumptions used in constructing the algorithm on the accuracy of the results. These assumptions 

include: disregard of the cylinder curvature in the heat conductivity problem, disregard of the temperature 

dependence of material properties, change in the heat transfer coefficient. The comparison was performed using 

the example of a cylindrical body part under the thermal shock scenario. For these conditions, in general, the 

deviation of temperature and stresses calculated from the proposed approach from numerical results did not exceed 

3%. In this case, the main part of the error – 1.7% was introduced by a change in the dependence of physical 

properties on temperature. The second largest factor introduced into the calculation of the error was the failure to 

take into account the curvature of the cylinder when solving the problem of heat conduction. It corresponds to an 

error of about 1.1%. Considering that the thermoshock scenario is boundary in terms of temperature change rate, 

it can be stated that the obtained analytical solution is sufficient for practical assessment of the axisymmetric stress-

strain state of the corresponding equipment and pipelines. 
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Introduction 

Structural elements in the form of two-layer cylinders are widely used in the equipment of power 

engineering, transport, food industry, agriculture and other branches of economy. When investigating 

their strength, it is often necessary to calculate the temperature stress fields. These calculations are 

usually performed using the finite element method. In order to reasonably reduce the amount of 

calculations, it is important to have a simple way of estimating the criticality of the stress state occurring 

under various loading scenarios. After such an assessment, it is sufficient to perform finite element 

calculations only on the critical scenarios. The purpose of this work is to construct and validate an 

analytical solution of a nonstationary axisymmetric thermoelasticity problem for a two-layer cylinder, 

which inner surface is in a state of convective heat exchange with a fluid. The temperature of the fluid 

and the heat transfer coefficient vary with time. This solution should help in estimating the stress-strain 

state of the walls of cylindrical vessels and pipelines coated internally with corrosion-resistant cladding. 

The analytical solution of the temperature problem for a homogeneous cylinder with a constant heat 

transfer coefficient has been known for a long time [1; 2]. However, for a variable heat transfer 

coefficient, the search for an analytical solution capable of giving practically acceptable results even in 

the case of a homogeneous cylinder continues to this day [3; 4]. 

In [5; 6], a solution to the problem for a two-layer cylinder was given for the case where the coolant 

temperature changes by leaps or linearly in time, and the heat transfer coefficient is constant. In addition, 

it was assumed that the initial temperature field of the cylinder walls is homogeneous. To assess the 

stress state during the course of real scenarios, the assumption of constancy of the heat transfer 

coefficient cannot be acceptable, because the heat transfer coefficient varies within a wide range. So, 

for the equipment of the first circuit of nuclear reactors, these changes can be three orders of magnitude. 

Note that under transient conditions the solution of the axisymmetric thermoelasticity problem 

allows us to approximate well the maximum values of the axial and circumferential stresses arising 
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under a load that is non-uniform in the circumferential direction. In this case, the values of 

circumferential stresses are even somewhat more conservative [7]. 

Thus, the problem consists in determining the stress-strain state of a two-layer cylinder when the 

temperature of the external medium and its heat exchange coefficient with the inner wall of the cylinder 

change according to known laws. The specified problem implies a sequential solution of two problems: 

the problem of nonstationary thermal conductivity for a two-layer cylinder and the structural quasi-static 

problem of determining the temperature stresses using the known temperature distribution at each 

moment of time. 

Methods 

The radii of the vast majority of vessels and pipelines are much larger than their wall thicknesses. 

For example, for most cylindrical vessels, the ratio of the wall thickness of the cylindrical shell to its 

inner radius is close to 0.1. This allows to locally neglect the wall curvature, when considering the 

axisymmetric heat conduction problem, i.e. to consider the problem not for a two-layer cylinder, but for 

a two-piece rectilinear rod of constant cross-section, the side surfaces of which are thermally insulated. 

Thus, we will consider the process of heat propagation in a piecewise homogeneous rod with an 

isolated side surface consisting of two homogeneous parts “1” (0 < x < h1) and “2” (h1 < x < h2 + h1 = h, 

see Fig. 1). At the end of the rod x = 0, corresponding to the inner surface of the cylinder, there is 

convective heat exchange with the external environment. The outer surface of the cylinder (x = h) is 

considered to be thermally insulated. 

To begin with, we assume that the heat transfer coefficient between the left end of the rod and the 

external environment H is constant. We will also assume that the ambient temperature changes over 

time at a constant rate V. Denote by T1(x, t) and T2(x, t) functions-distributions of temperature on parts 

of the rod “1” and “2”. Then, at the appropriate choice of the zero temperature level, the condition at the 

left end of the rod can be written in the form: 
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where λ1 – coefficient of internal thermal conductivity of the material of the part “1”; 

 t – time. 

The boundary conditions are supplemented by initial conditions of arbitrary form: 
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=
, 2,1=k , (2) 

where T10(x) and T20(x) are arbitrary functions, that set the initial temperature distribution on the 

left and right parts of the rod, respectively. 

The solution of the formulated problem will be sought in the form of superposition: 
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where Txk(x, t) – are the functions that provide satisfaction of the heterogeneous boundary 

condition (1); 

 Ttk(x, t) – are the functions that provide satisfaction of heterogeneous initial conditions (2). 

Problem solution with respect to functions Txk(x, t) was obtained in [5] by applying the Laplace 

transform over time [8]. It can be represented as: 
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where 
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 λk – internal thermal conductivity coefficients; 

 ρk – densities; 

 kc  – heat capacities of the materials of the parts of the rod; 

 μn, n = 1,2,3... – consecutive roots of a transcendental equation: 

 ( ) 0sincoscossinsinsincoscos =+−− nnnnnnnnn  . (5) 

Relationships (4) and (5) completely define the functions Txk(x, t). The procedure for obtaining this 

solution is described in more detail in [5]. 

Turning to finding functions Ttk(x, t), note that the series in (4) is the expansion in the system of 

eigenforms: 
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The system of functions Xn(x) as the solution of the eigenfunction problem is complete and 

orthogonal on the interval [0; h], i.e.: 
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This allows us to present the solution of the second problem for the functions ),( txTtk  in the form 

of a series of forms: 
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We find the evolutionary multiplier )(tTn  as a solution of Cauchy problems for first-order linear 

equations with constant coefficients, which we obtain by substituting (6) into the thermal conductivity 

equations and taking into account that the initial temperature distribution can also be decomposed into 

eigenforms: 
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Finally, the solution of the second problem can be written in the form: 
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The relations (3), (4) and (7) set the solution of the set problem. Based on this solution, it is possible 

to construct an algorithm for solving a more general problem for the case of arbitrary change in the heat 

transfer coefficient in time. For this purpose, the whole time interval of a transient process is divided 

into subintervals, in which the heat transfer coefficient changes little and can be considered constant. Its 

value is taken as averaged over the interval. Also, in each subinterval, the temperature change should be 

well approximated by a linear function. The formulated conditions can always be satisfied by choosing 

time subintervals small enough. After partitioning into subintervals, the general thermal conductivity 

problem is decomposed into a sequence of problems of the same type, the solution of which is given 
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above. In this case, the initial temperature distribution in each interval, except for the first one, is 

obtained as the final distribution in the previous subinterval. 

 

 

Fig. 1. Heat-transfer problem geometry Fig. 2. Thermoelastic problem geometry 

Temperature processes in the walls of vessels or pipelines develop much slower in time than the 

mechanical processes caused by the presence of intrinsic forces of inertia. Therefore, the structural 

problem can be regarded as quasi-static, in which time acts as a parameter, and a static problem of 

thermoelasticity is considered at each moment of time. 

Thus, we consider the equilibrium of a cylinder consisting of two homogeneous elastic layers: the 

inner layer a < r < b, which parameters are denoted by the index “1”, and the outer layer b < r < c, 

which parameters are denoted by the index “2”. Here r – the radial coordinate counted from the axis of 

the cylinder. To begin with, we will assume that no external mechanical loads are applied to the cylinder, 

and the external load corresponds to the non-uniform temperature field T(x,t), a < r < c, t > 0. The 

temperature field for each moment of time is determined on the basis of the relations (3), (4) and (7). In 

doing so, we will assume that r = x + a, h1 = b–a, h2 = c–b. In practical calculations, the distributions of 

circumferential σφ and longitudinal σz stresses depending on the radial coordinate is of interest, first of 

all r. 

Based on the equations in stresses, Hook’s law and Cauchy relations for the components of the 

strain tensor, we can arrive at the ordinary differential equations with respect to the radial components 

of the displacement vector in each layer uk. Their general solutions can be represented in the form [9]: 
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where ν – Poisson’s ratio, common for both materials,  

 αk – coefficients of linear expansion of materials,  

 C1-4 – arbitrary integration constants, r1 = a, r2 = b. 

The following radial stress distributions in the layers correspond to the displacements (8): 
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where Ek – Young’s moduli of cylinder materials. 

Subjecting (8) and (9) to the no-stress conditions on the side surfaces of the cylinder and to the 

continuity conditions for the displacement and stress fields at the interface transition, we find the values 

of the constants C1, C2, C3 and C4. Then the circumferential and longitudinal stresses in the cylinder 

layers can be represented as: 
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Since the liquid filling the vessels and pipelines is usually under pressure, the solution (10) must be 

supplemented by the solution of the problem for a bilayer cylinder, on the inner surface of which the 

pressure is applied p. It is constructed in a similar way and can be represented as: 
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Relations (10) and (11) are given with some inaccuracies in [10]. They specify the solution of the 

axisymmetric thermoelasticity problem for a bilayer cylinder when the internal pressure and temperature 

distribution over the thickness of its wall are known. 

Results and discussion 

As an example, on which the possibility of applying the obtained solution to practical calculations 

was investigated, we considered the model scenario of a thermal shock of a cylindrical body given in 

[11]. Dependences of its thermal-hydraulic parameters on time (coolant temperature T, heat transfer 

coefficient H and internal pressure p) are shown in Fig. 3. This scenario assumes a rapid temperature 

drop of about 200 ºС during the first stage of loading. The points on the graphs correspond to key points 

in time. It is assumed that at the time intervals between the key moments all thermal-hydraulic 

parameters change linearly in time. 

During the calculations, the geometric parameters of the cylinder were set equal to the geometric 

parameters of the cylindrical body shell: inner radius a = 2068 mm, cladding thickness h1 = 7 mm, base 

metal thickness h2 = 192.5 mm. The thermal and elastic properties of the materials were chosen similar 

to those of [11]. 

The factors that affect the accuracy of the analytical solution compared to the numerical results can 

include: 

• not taking into account the cylinder curvature in the analytical solution of the heat conduction 

problem; 

• failure to take into account the dependence of material properties on temperature; 

• jump change in the value of the heat transfer coefficient. 

Using the results of [11] and additional calculations with the finite element package CalculiX [12], 

the contribution of each of these factors to the error of the final result was evaluated. The need for 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 26.-28.05.2021. 

 

1531 

additional finite-element calculations was dictated by the limited data given in [11]. The analytical 

calculations were given for two degrees of discretization of the heat transfer coefficient: with its 

averaging at intervals between key moments of time and with averaging at each step. Let us denote the 

first analytical calculation as A1, and the second analytical calculation as A2. We note at once the fact 

that the numerical calculations, which do not take into account the continuous change in the heat transfer 

coefficient, the curvature of the cylinder and the dependence of material properties on temperature, 

coincided with the analytical solution with great accuracy (deviations are much less than 1%), which 

confirms the correctness of the finding. In addition, three more numerical calculations were performed. 

Let us refer to these calculations as C1, C2, and C3. Calculation C1 took into account only the continuous 

change in the heat transfer coefficient, but did not take into account the curvature of the cylinder and the 

temperature dependence of the material properties. The calculation of C2, in addition to the continuous 

change in the heat transfer coefficient, also took into account the curvature of the cylinder, and the 

calculation of C3 took into account all three factors. In fact, the calculation of C3 repeated the calculation 

of the temperature field performed in [11], and their results coincide with great accuracy. Therefore, we 

will identify these calculations, and we will consider the calculation of C3 as a reference and use its 

results where the results given in [11] are missing. 

Figure 4 compares the temperature evolution over time at six points: 1 – point on the inside surface 

of the cylinder, 2 – point on the interface, 3 – point 1/8 of the base metal thickness from the interface,  

4 – point 1/4 of the base metal thickness from the interface, 5 – point in the middle of the base metal 

and 6 – point on the outside surface of the cylinder. The temperature values at points 2 and 3 for 

calculating C3 were taken from [11]. It can be seen that all the graphs break up into six consecutive 

families of curves depending on the calculated point. The lower family corresponds to point 1, and the 

upper one to point 6. Within each family, the curves are practically indistinguishable within the accuracy 

of the graphs, which indicates a good coincidence of the calculation results. To quantify the accuracy of 

the calculations, Table 1 shows the relative errors of the temperature calculations (second column) 

related to the C3 calculation results. The temperature difference at the beginning and at the end of the 

process was chosen as the normalizing temperature, i.e. 260 ºС.  

  

Fig. 3. Thermalhydraulics parameters  

of scenario 

Fig. 4. Temperature evolution at six points 

obtained from different calculations 

The calculations were performed on a uniform grid of points according to the depth of layers with 

a step of 0.35 mm in the cladding and 0.48 mm in the base metal of the CR. 

Table 1 

Relative error of calculations 

Calculation 
Error, % 

T σφ  σz 

A1 3.3 5.1 5.2 

A2 2.8 2.6 2.8 

C1 2.8 2.9 3.2 

C2 1.7 1.9 2.0 
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Several important conclusions can be drawn from the data in the second column of Table 1. First 

of all, note that all calculations provide acceptable practical accuracy. The jump change in the heat 

transfer coefficient weakly affects the accuracy of the results, because the difference in the error between 

scenarios A1 and A2 was only 0.5%, and between scenarios A2 and C1 is negligibly small at all. Thus, 

we can state the fact that the piecewise constant approximation of the heat transfer coefficient is 

sufficient for practical calculations. The factor of not taking into account the curvature of the cylinder 

affects the accuracy of the results more significantly (the difference in the error between scenarios C1 

and C2 is 1.1%). Obviously, the corresponding error will grow as the ratio of the wall thickness to the 

cylinder radius increases (recall that in our case this ratio is close to 0.1). For relatively thick cylinders, 

the thermal conductivity problem should already be formulated as axisymmetric in polar coordinates, 

which will lead to replacement of trigonometric functions by cylindrical ones in the solution. Since the 

error from averaging of thermal properties is 1.7%, which is higher than the error caused by not taking 

curvature into account, for relative wall thicknesses as in CR and smaller the transition to the 

axisymmetric formulation is unjustified in carrying out practical calculations. The constructed analytical 

solution corresponds to the problem in the linear formulation, so the procedure of averaging the 

thermophysical properties of materials cannot be bypassed in its framework and it is difficult to reduce 

the corresponding error in the results. 

The main purpose of strength calculations of cylindrical bodies is to determine circumferential and 

axial stresses in them. To determine them, we performed calculations using the temperature fields 

obtained earlier in the calculations A1, A2, C1, C2 and C3. The plastic properties of the materials were 

not taken into account, i.e. the stresses were calculated for linearly elastic materials. Formulas (10), (11) 

were used to obtain an analytical solution. The temperature of zero voltages was considered to be 290 ºС. 

Figures 5 and 6 show plots of the above stresses vs. time in seven points: 1 – point on the inside surface 

of the cylinder, 2 – point near the interface on the cladding side, 3 – 7 – points in the base metal, evenly 

spaced along its thickness, beginning with point 3 near the interface and ending with point 7 on the 

outside surface of the cylinder.  

  

Fig. 5. Circumferential stresses at seven points 

obtained from different calculations 

Fig. 6. Longitudinal stresses at seven points 

obtained from different calculations 

As with the temperature plots, all curves are distributed into families corresponding to one point or 

another. The only exception is the points in the cladding, at which the curves corresponding to the 

analytical and numerical solutions were separated at the stage of temperature equalization in the cylinder 

wall. This is explained by the difference in the values of the averaged characteristics and the values 

corresponding to low temperatures, as well as by the much smaller thickness of the cladding layer in 

relation to the thickness of the base metal layer. 

In order to quantify the influence of factors, we calculated the relative errors of the results of 

calculations of circumferential σφ and axial σz voltages A1, A2, C1 and C2 with respect to the calculation 

of C3. They are given in the third and fourth columns of Table 1. The maximum value of the 

corresponding stresses for the C3 calculation was taken as the normalizing value to which the deviation 

referred. The conclusions that can be drawn from these data are generally consistent with the conclusions 

we have drawn from the results of the temperature calculations. Only the larger value of the C1 
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calculation error looks a little strange in comparison with the A2 calculation. In general, we can state 

the sufficient accuracy of the analytical solution for the estimated calculations. 

Conclusions 

1. The solution of the unsteady thermal conductivity problem for a bilayer cylinder with an arbitrary 

initial temperature distribution and a linearly varying ambient temperature is constructed. This 

solution has a simple form, is expressed in terms of elementary functions and can be easily 

implemented using any computer package. An algorithm for using the above solution to find 

temperature fields in the case of piecewise constant change in the heat transfer coefficient has been 

proposed. The solution of the thermal conductivity problem is supplemented by the solution of the 

corresponding thermoelasticity problem for a bilayer cylinder, as well as by the solution of the 

problem of a bilayer cylinder under internal pressure. This whole set of analytical relations makes 

it possible to obtain temperature and stress distributions in bilayer cylindrical vessels and pipelines 

subjected to arbitrary axisymmetric force and temperature loading. 

2. The accuracy of the analytical solution is sufficient for practical calculations. If the time intervals 

at which the heat transfer coefficient is assumed to be constant are chosen correctly, deviations of 

both temperatures and stresses do not exceed 3%. In this case, the main contribution to this deviation 

is made by averaging of temperature-dependent material properties. With a non-axisymmetric 

distribution of the temperature load, the proposed solution can serve to estimate the stress level and 

sort the scenarios under consideration according to the degree of danger. 
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